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Abstract

Turbo-generator shafts are often subjected to complex dynamic torsional loadings, resulting in generation and prop-
agation of circumferential cracks. Mode III fatigue crack growth generally results in a fracture surface consisting of
peaks and valleys, resembling a factory roof. The fracture surface roughness depends on the material microstructure,
the material yield strength, and the applied cyclic torque amplitude. This crack pattern can severely affect the vibration
characteristics of the shafts. The accurate evaluation of the torsional dynamic response of the turbo-generator shafts
entails considering the local sources of energy loss in the crack vicinity. The two most common sources of the energy
loss are the local energy loss due to the plasticity at the crack tip and frictional energy loss due to interaction of mutual
crack surfaces. A theoretical procedure for evaluating the values of the system loss factors corresponding to these
sources of energy loss is presented. Furthermore, the local flexibility is obtained by evaluating the resistance of the
cracked section of the shaft to the rotational displacement. The shaft material is assumed to be elastic perfectly plastic.
The effects of the applied Mode III stress intensity factor and the crack surface pattern parameters on the energy loss
due to the friction and the energy loss due to the plasticity at the crack tip are investigated. The results show that
depending on the amplitude of the applied Mode III stress intensity factor, one of these energy losses may dominate
the total energy loss in the circumferentially cracked shaft. The results further indicate that the torsional dynamic
response of the turbo-generator shaft is significantly affected by considering these two sources of the local energy loss.
© 2005 Elsevier Ltd. All rights reserved.
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Nomenclature

a radius of uncracked region

a; dimensionless parameter

b crack length

¢y torsional damping constant

h asperity height

k¢ torsional spring constant

rp plastic zone radius for Mode III cyclic loading
r distance from the crack tip in a specified direction
X1 extent of the crack surface interaction

U axial crack opening displacement at the point x;
us(x)  shear displacement

UsT shear displacement at the crack mouth

up energy loss density at each point in the plastic zone
o asperity angle

€ effective strain

I effective stress

oo normal stress at the crack tip, Case A

oy material yield stress

u columb friction coefficient

A asperity wavelength

dimensionless parameter

n loss factor of the spring-damper model
np loss factor of the model due to plasticity at the crack tip
Ne loss factor of the model due to friction of the mating crack surfaces

w frequency of harmonic torque
D response amplitude for the spring-damper model
r effective frictional coefficient

E material elastic modulus

G material shear modulus

Ko effective stress intensity factor
K applied stress intensity factor
Kppie frictional stress intensity factor
L shaft length

M(y) dimensionless parameter
Ni(y) dimensionless parameter
N>(y) dimensionless parameter

R shaft radius

R extent of the plastic zone in a specified direction

T applied torque

Up energy loss due to the plastic deformation at the crack tip in one cycle

Ur energy loss due to friction between the mating fracture surfaces in one cycle
U total energy loss in one cycle

AW  energy loss in one cycle for the spring-damper model
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1. Introduction

The complex transient torsional loading history of turbo-generator shafts often results in initiation and
propagation of circumferential cracks in these structural components, jeopardizing their structural integ-
rity. To prevent the catastrophic failure of these shafts, a proper non-destructive evaluation method should
be utilized in order to monitor its integrity during its service life. In recent years, the vibration-based inspec-
tion has been developed into an effective method for monitoring the structural integrity and detecting de-
fects. This method is predominately based on monitoring the vibrational characteristics of the structural
system and capturing their variation with the presence of defects (e.g. Vaziri and Nayeb-Hashemi, 2002,
submitted for publication; Nayeb-Hashemi et al., 2003; Doebling et al., 1998; Dimarogonas, 1996;
Krawczuk and Ostachowicz, 1996).

The accuracy of relating experimental data to the defect size and location depends on the analytical re-
sults that in turn depend on the proper modeling of cracked regions. The crack region is often modeled as a
spring or an elastic hinge and the local energy loss on the crack region is ignored. This local energy loss
contributes to the damping behavior of the system and could affect the dynamic behavior of the cracked
structure significantly. The main sources of this energy loss are due to the plastic deformation at the crack
tip and the friction between the mating fracture surfaces depending on the crack surface morphology and
the load history. In a recent work, Vaziri and Nayeb-Hashemi (2002, submitted for publication) evaluated
the local energy loss due to the plasticity at the crack tip of a viscoelastic-perfectly plastic bar with a penny
shape crack subjected to a uniaxial harmonic loading. The energy loss due the plasticity at the crack tip was
related to the plastic zone and the crack opening displacement. An equivalent viscous damping is exploited
in the model in order to study the effect of local energy loss on the axial dynamic response of the bar. It was
concluded that considering the local energy loss and material viscosity is essential for proper modeling of
the dynamic response of the bar.

In contrast to Mode I crack growth, where there are little crack surfaces interactions, in Mode III, the
mutual crack surfaces may interact in a complicated manner. The crack surface interactions occur when
macroscopically rough crack faces are displaced relative to one another in shear, resulting in a contact pres-
sure profile between the mutual crack surfaces. Readers are referred to Nayeb-Hashemi and McClintock
(1982), Nayeb-Hashemi et al. (1983) for a detail discussion about the crack surface interactions in Mode
IIT crack growth. In most of the pervious studies (e.g. Gasch, 1993; Sekhar and Prabhu, 1994) for evalu-
ating the vibrational characteristics of cracked shafts, the effects of these crack surface interactions, as well
as the energy loss due to the plasticity at the crack tip are ignored.

The objective of the present study is to evaluate the vibrational characteristics of turbo-generator shafts
with a circumferential crack of various lengths by taking into account the local energy loss in the crack re-
gion due to the plasticity at the crack tip and the frictional energy loss due to the crack surface interactions.

2. Theoretical investigations

The schematic diagram of a shaft with a circumferential crack subjected to a dynamic torsional load,
1(¢), is shown in Fig. 1. The shaft material is assumed linear elastic-perfectly plastic. In order to evaluate
the torsional dynamic response of the shaft with a circumferential crack, a shaft model consisting of two
segments connected by a torsional spring and a torsional damping is exploited, Fig. 2. The model torsional
spring and the viscous torsional damper represent the local flexibility and the local energy loss of the crack
region, respectively. The torsional spring constant is attained by evaluating the resistance of the crack sec-
tion of the shaft to the rotational displacement. The model torsional damping constant is evaluated by con-
sidering the energy loss at the crack region due to the cyclic plasticity deformation at the crack tip and the
frictional energy loss due to the crack surface interaction. The details of evaluating each of these model
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Fig. 1. Schematic model of a shaft with a circumferential crack.
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Fig. 2. The system model corresponding to Fig. 1.

components are described in Sections 2.1-2.3. In Section 2.4, the total loss factor of the model is related to
the total energy loss per cycle in the shaft. Subsequently, the torsional dynamic response of a circumferen-
tially cracked shaft model subjected to a harmonic torsional loading at its free end is evaluated in Section
2.5.

2.1. Torsional spring constant model

The torsional spring constant is related to the shear displacement at the crack mouth, u3t, by

TR
ky=—, 1
LS (1)
where R is the shaft radius and T is the applied torque. The shear displacement along the crack is presented
by Gross and Mendelsohn (1988) as,

s (x) = 2K
GVnb

where G is the shear modulus of the shaft material, b is the crack length and Ky is the applied Mode 111
stress intensity factor, which is obtained from (Tada et al., 2000),

(=), @
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N T T3V TRV T 16 T1ag? +0.208" |, (3)
where
a
=R @

where a is the radius of the uncracked region, Fig. 1. Eq. (3) is valid for 0 <y < 1. The model torsional
spring constant can be evaluated by substituting (2) and (3) in (1) as,

kt = GR3M(V)5 (5)
where
M) = s ©

41 =) [1+3y 4+ + 307 + 30 +0.208)5]
Fig. 3 shows the variation of dimensionless parameter, M(y) with 7.
2.2. Evaluating the energy loss due to cyclic plasticity at the crack tip
The energy loss due to the plastic deformation at the crack tip is obtained by assuming the plastic zone

size as a circle at the crack tip with the radius, rp, Fig. 4. The radius of the plastic zone for Mode III cyclic
loading can be estimated from (Broek, 1978),

3 (Ker ?
FP—%(JY>- (7)
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Fig. 3. Variation of non-dimensionalized parameters used in the theoretical investigation vs. y.
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Fig. 4. Variation of the effective strain in a particular direction inside the plastic zone.

The energy loss density due to the plastic deformation at any point in the plastic zone at the crack tip can
be approximated as (Chen and Han, 1988),

iip(r, 0) = 5%, (8)

where ip is the energy density, 6 and ¢ are the effective stress and strain, respectively. Because the material is
elastic-perfectly plastic, & is equal to the yield stress of the material, oy. The effective strain, € at the edge of
the plastic zone is taken as oy/E, where E is the shaft material Young’s modulus. The effective plastic strain
inside the plastic zone can be approximated as (Nayeb-Hashemi and Taslim, 1987),
R* oy
- =X 9

r* E ( )
where r* and R" are the distance from the crack tip and the extent of the plastic zone in a particular direc-

tion, (r,0), Fig. 4. By substituting (9) in (8), the energy loss density at each point in the plastic zone can be
presented as,

&(r,0) =

R O'Y
 E°

Then, the total energy loss due to the plastic deformation at the crack tip in half cycle can be evaluated
by integrating the energy loss density over the plastic zone volume,

2n rp p*
Up = (/ / R “Yrdedr>2na (11)
0=0 Jr

this results in,

up(r,0) = (10)

2,22
4n arp0y

E

This equation presents an approximation for the energy loss due to cyclic plasticity for half cycle of har-

monic oscillation for the elastic-perfectly plastic turbo-generator shaft with the circumferential crack of
length a.

Up = (12)
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2.3. Energy loss due to frictional energy loss between the mutual crack surfaces

The frictional energy loss in one cycle for a specified turbo-generator shaft with a certain circumferential
crack length due to harmonic torsional oscillation depends on the crack surface interaction length and the
pressure profile arising along the interaction zone. This is a complex function of crack surface morphology
and the applied Mode III stress intensity factor. The frictional energy loss in one cycle due to friction be-
tween the mating fracture surfaces can be presented as,

2n/w b
Us = 2m / / (R — x)n(x, Dits.r (x, £) dxdr, (13)
0 0

where g g(x, 1) is the frictional stress profile between cracked surfaces at any point and w is the frequency of
applied torque. it i (x, ¢) is the relative velocity of the crack surfaces under dynamic torsional loading. The
relative velocity of the crack surfaces under torsional loading can be obtained from the Mode III shear
displacement,

2K e (t
U eir (X, 1) = G\;fn(_b)
The effective Mode III stress intensity factor is related to the applied Mode III stress intensity factor,

Kipi(?), and the frictional stress intensity factor arises due to the interactions of the crack surfaces, Kpiq(?),
by

(B — )™, (14)

Keit (1) = Kmi (1) — Kiiie(2). (15)
The frictional Mode III stress intensity factor is presented by Gross and Mendelsohn (1989) as,

Kine(t) = — (%)0'5 /0 ' % dr. (16)

The frictional stress profile between the mutual crack surfaces and the interaction zone can be evaluated
by exploiting the crack pattern. Fig. 5 shows a typical fracture surface pattern of a shaft with a circumfer-
ential crack and its interaction due to cyclic torque with various amplitudes. The reader is referred to
Nayeb-Hashemi and McClintock (1982) and Nayeb-Hashemi et al. (1983) for details about the experiments
and the discussion about initiation and propagation of the circumferential crack in turbo-generator shafts
under cycling torsional loading. At high cyclic Mode III stress intensity factor, the circumferential crack
growth results in a macroscopically flat fracture surface. However, at low cyclic Mode III stress intensity
factor circumferential crack growth results in a rough fracture surface, which resembles a factory roof. The
fracture surface roughness depends on the material microstructure, the material yield strength, and the ap-
plied cyclic torque amplitude. This crack pattern results in interaction between mutual crack surfaces,
which results in the frictional energy loss. Here, we consider the fracture surface as consisting of peaks
and valleys with average roughness height /2, and an average wavelength A, see Fig. 6. This assumption
is somewhat in agreement with the experimental results from Nayeb-Hashemi et al. (1983) and Nayeb-
Hashemi and McClintock (1982). Then, the frictional stress can be related to the normal contact stress,
oc(xn l)a by»

ar(x,t) = I'o(x, 1), (17)
where I’ is the effective frictional coefficient that can be related to coulomb friction coefficient, i, and asper-
ity angle, o,

_ tano+u
-1 —putana’

(18)
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Fig. 5. Circumferential crack propagation patterns for a shaft under various applied torques.
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Fig. 6. The crack pattern which consists of peak and valleys with an average amplitude of roughness, /2, and an average wavelength, 4,
presenting the factory roof crack surface morphology. At x = x;, the shear displacement of the crack surface is equal to half
wavelength of the asperities, 2/2 and the crack opening displacement is equal to the asperity height 4. For x > x;, where the shear
displacement of the crack tip is greater than half wavelength of the asperities, no interaction is assumed between the mutual crack
surfaces. For x < xi, the interaction between the mutual crack surfaces generates stress profile normal and parallel to the crack surface.

Here the asperity angle can be related to the average asperities height and its wavelength, o = arctan(2h/

J), Fig. 6.

Substituting (16) and (17) in Eq. (13), the frictional energy loss in one cycle for the circumferen-
tially cracked turbo-generator shaft exhibiting the crack surface pattern depicted in Fig. 6, can be repre-

sented as,
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4/nr
U =
GVb Jo

In order to calculate the frictional energy loss, the normal contact pressure profile and the effective Mode
IIT stress intensity factor should be evaluated, which are complex functions of the crack pattern parameters,
coefficient of friction between the crack surfaces and applied Mode III stress intensity factor. Vaziri and
Nayeb-Hashemi (2003, 2005) developed a theoretical procedure to evaluate the normal pressure profile
along the crack and the effective Mode III stress intensity factor. These could be obtained by considering
that the Mode III shear displacement at the extent of the interaction, x; is equal to asperities half wave-
length, A/2 (/ is the average wavelength, Fig. 6) and the crack opening displacement at this point is equal
to the asperities height, 4. Three possible pressure profiles due to the crack surfaces interaction are assumed,
Fig. 7, in order to evaluate the effective Mode III stress intensity factor under various applied Mode III
stress intensity factors. For all of these cases, the extent of the crack surface interaction, x;, can be evalu-
ated by equating the Mode III shear displacement from (14), to the half wavelength,

212
n=by1- "L (20)
16chf

It is assumed that there is no interaction between the crack surfaces for x < x;. This assumption can be
justified by considering that the Mode I displacement is greater than the asperity average height for x < x.
The frictional energy loss for each pressure profile of Fig. 7 and the procedure for defining the normal pres-
sure profile parameters are presented in Appendix A. Readers are referred to Vaziri and Nayeb-Hashemi
(2005) for details concerning the theoretical investigation.

2n/w b
/ (R —x)(b* = x2)" 6 (x, 1) aKg;(t) dxdr. (19)
0

2.4. Total loss factor of the system

The total energy loss per cycle in the turbo-generator shaft is related to the energy loss due to cyclic plas-
ticity at the crack tip and the fictional energy loss due to the crack surface interaction,

U =2Up + Uy (1)

Case A Case B Case C

Fig. 7. Possible pressure distribution profiles between mating fracture surfaces arising from the crack surface interactions.
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In addition, the energy loss per cycle in the model, Fig. 2, subjected to the torsional oscillation at the
frequency of w and amplitude @ can be presented as (Rao, 2004),
AW = nd’we,, (22)

where ¢, is the model torsional damping constant. The amplitude of the response can be related to the shear
displacement at the crack mouth, usr o,

U3T eff
P =" 23
L (23)
The shear displacement at the crack mouth, usr g, is evaluated from (13),
2Keff\/l_)
off = ————. 24
U3T eff G ﬁ ( )

The torsional damping constant is attained by equating the total energy loss per cycle in the model from
(22) to the total energy loss per cycle in the shaft due to the cyclic plasticity at the crack tip and the fric-
tional energy loss, Eq. (21) as,

 8marjoi R’ UR?

¢ = . (25)
t Elfip p® g ®
Substituting (7) and (24) in (25) results in,
T2K%:aR*G* UR*G?
o = it ! (26)

Ewbd?, 4K b’
The local flexibility and damping of the model can be combined by utilizing a complex stiffness, 4;,

ki = k(1 +in), (27)

where k; is the torsional stiffness from (5) and n = c¢;w/k; is the system loss factor, which can be presented in

terms of the loss factors due to the plasticity at the crack tip, #p, and due to the friction of the mating crack
surfaces, #y, as,

n=np+ny, (28)
where
K
Np = m]\/l () (29)
UG
N =—5—3N2(7) (30)
! KR
and
B 36y
Ni(y) = A=7)M>) (31)
1
Nay(y) = (32)

4(1 —y)M(y)

The variations of the dimensionless parameters N,(y) and N,(y) with y are presented in Fig. 3.
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2.5. Torsional dynamic response of the system

The torsional dynamic response of the turbo-generator shaft subjected to a harmonic torsional loading
at its free end, Tye'®’, is evaluated considering the equations of motion for each segment shown in Fig. 2
and their corresponding boundary conditions. The displacement function 04x, ), corresponding to each
of the model segments when the shaft is subjected to harmonic torsional loading is of the type,

0:(x,t) = 0;(x)e’” where i =1 and 2 (33)
by introducing the following dimensionless parameters,
2. 2
a; = plLTw where i = 1 and 2 (34)
X
_* 35
=7 (35)

The governing equation of rotational motion for each segment of Fig. 2, in the front and back of the
crack faces, is presented by,

d*0;(x)
dé

Solution of (36) is in the form of:

+a;0;(x) =0 where i =1 and 2. (36)

2
0,(x) =y Aye™, (37)
=1

where S; =i/a;, and S = —i\/a; (i= —+/1) and A;s are constants which can be calculated from the
boundary conditions of each segment.

3. Results and discussions

The results are provided for 4140 steel (in annealed condition) shaft of 0.4 m long and 0.1 m radius with
a circumferential crack. Table 1 shows the mechanical properties of 4140 steel. It is assumed that the mate-
rial properties are not sensitive to strain rate. All the results presented here are for constant radius of the
shaft, R =10 cm, and constant crack length equal to half of the shaft radius, y = 0.5. Furthermore, the
coefficient of friction between the mating surfaces is assumed to be constant, u = 0.75. The applied torsion
to the shaft is harmonic. Based on the theoretical investigations presented in Section 2.3, a set of MATLAB
and MAPLE codes are developed to calculate the effective Mode I11 stress intensity factor and normal pres-
sure distribution along the crack. The frictional energy loss per cycle is obtained by numerically evaluating
the right hand side of Eq. (13).

Table 1

Material properties of the shafts

Material 4140 steel, in annealed condition
Density 7850 kg/m?>

Poisson’s ratio 0.3

Elastic modulus 200 GPa

Yield stress 420 MPa
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3.1. Vibrational characteristics of the circumferentially cracked shaft

Fig. 8 presents the effective Mode III stress intensity factor for various Mode III stress intensity factor
applied to the shaft with fracture surface roughness A =100 um, 4 = 10 um. The results indicate that a
critical value for the applied Mode III stress intensity factor can be identified (critical theoretical SIF =
61.5 MPa./m), which results in a little crack surface interaction and sudden burst in the Mode IIT crack
sliding. Furthermore, the results show that the value of this critical theoretical SIF, exhibits a very low sen-
sitivity to the crack length and mainly depends on the crack surface morphology (asperities height and
wavelength). Vaziri and Nayeb-Hashemi (2003, 2005) have investigated the effect of these parameters on
this critical value.

The variation of the frictional energy loss in one cycle due to friction between the mating fracture sur-
faces with the amplitude of applied Mode III stress intensity factor is depicted in Fig. 8. The results show
that the frictional energy loss increases with increasing the amplitude of applied Mode III stress intensity
factor. The frictional energy loss exhibits a very little sensitivity to the amplitude of Mode III stress inten-
sity factor for the applied Mode 111 stress intensity factor greater than the critical value. This could be jus-
tified considering the very small region of interaction between the mating fracture surfaces for the applied
stress intensity factor greater than the critical value.

Fig. 9 shows the variation of the loss factors due to the plasticity at the crack tip and frictional energy
loss vs. the amplitude of applied Mode III stress intensity factor. The results indicate that for the amplitude
of applied Mode III stress intensity factor lower than the critical value, the energy loss due to the friction
dominates the energy loss characteristics of the system. However, for the applied Mode III stress intensity
factor greater than the critical value, the energy loss due to the plasticity at the crack tip dominates the en-
ergy loss in the system. While the frictional energy loss per cycle is almost constant for the amplitude of
applied Mode III stress intensity factor equal or greater than the critical value (Fig. 8). The potential energy
stored in the elastic part of the model (torsional spring) increases significantly at the critical value of the
applied Mode III stress intensity factor. This results in reduction of the frictional loss factor (the loss factor
is defined as the energy loss in a cycle to the maximum potential energy stored in the model). In contrast,

T 100.0
<~ 1000 | T
8, off
=) -——= U 10.0
% <
M k=)
LL" S’
@ R=10 cm, =05
€ jo0l A=100um,h=10um | 10
2 u=0.75
L . e . 0.5
Ciritical Theorefical SIF, 61.5 Mpa.m™
; ,>< l 01
10 100

Applied SIF, X, (Mpa.m™”)

Fig. 8. Variation of the effective stress intensity factor, K.y and the frictional energy loss in a cycle, Uy vs. the applied stress intensity
factor, K.
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Fig. 9. Variation of the loss factors of the model vs. the applied stress intensity factor, K.

since the plastic zone is a function of the effective stress intensity factor, the energy loss due to cyclic
plasticity at the crack tip increases abruptly at the critical value of the applied Mode III stress intensity
factor. The total loss factor of the system is minimized at the critical applied Mode III stress intensity
factor.

The model loss factors and its components (due to frictional and due to plasticity) are functions of the
crack surface morphology. Here, limited results are provided depicting the effect of the average asperities
height on the variation of each of these loss factors with the amplitude of Mode III stress intensity factor
(Figs. 10-12). The total loss factor and its components exhibit a drastic change as the applied stress inten-
sity factor approaches the critical stress intensity factor. This drastic change in the components of the total
loss factor is more pronounced for rougher fracture surfaces (higher asperities height). Furthermore, the
results indicate that the frictional loss factor is more sensitive to the crack surface morphology (represented
here with two parameters, 4 and /). The total loss factor of the system exhibits significantly lower sensitivity
to the crack surface morphology than its components.

3.2. Torsional dynamic response of the circumferentially cracked shaft

Fig. 13 shows the frequency response of the shaft at the point of applied load under a harmonic torsional
load with the amplitude of 1 N m, for various local energy loss factors, 5. The circumferential crack is lo-
cated at the middle of the shaft with the crack size of y = 0.5. The results indicate that the local energy loss
affects the amplitude of the vibration, as well as the frequencies where peak responses occur. The amplitude
of the system drastically reduces with the introduction of the local loss factor into the system response.
However, further increase in the local loss factor, apparently increases the amplitude of the system re-
sponse. This can be justified considering that the system response depends on the energy loss and stiffness
of the cracked section.

A dimensionless parameter, y(n), is defined as the ratio of the nth peak response frequency of the
circumferentially cracked shaft to the nth resonant frequency of the perfect shaft (without crack). The
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Fig. 10. Variation of the loss factor due to the plasticity at the crack tip, np vs. the applied Mode III stress intensity factor, Ky, for
various average asperities heights.
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Fig. 11. Variation of the loss factor due to the friction of the mating fracture surfaces, ¢ vs. the applied Mode III stress intensity
factor, Kjy; for various average asperities heights.

variation of the first three dimensionless peak response frequencies of the circumferentially cracked shaft,
Y(n), n=1-3, with the local energy loss, #, is shown in Fig. 14.
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Fig. 12. Variation of the system total loss factor,  vs. the applied Mode III stress intensity factor, Ky for various average asperities
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Fig. 13. Effects of the local energy loss on the frequency response of the shaft with a circumferential crack, y = 0.5 for a crack located
at the middle of the bar, [} = /5.

The results show that the peak response frequencies of the system initially increase drastically with
increasing the local loss factor, approaching the resonant frequencies of the uncracked shafts. However,
beyond a critical loss factor, the system peak response frequencies exhibit a very small sensitivity to the
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Fig. 14. Variations of the first-third non-dimensionalized peak response frequencies of the shaft with a circumferential crack, y = 0.5
vs. the local loss factor, for a cracked located at the middle of the bar, [, = 5.

local loss factor. The sensitivity of the peak response frequency to the local loss factor is more pronounced
for lower peak response frequencies for the geometry and crack location studied.

4. Concluding remarks

A theoretical procedure is developed to evaluate the energy loss in a shaft with a circumferential crack
and macroscopically rough fracture surface, subjected to cyclic torsion. The energy loss stems from the cyc-
lic plasticity at the crack tip and frictional energy loss due to fracture surface interactions. The results are
obtained for a wide range of applied cyclic Mode III stress intensity factor amplitude and for a specified
crack length and fracture surface morphologies. The results of the analysis indicate that for a specified
crack length and fracture surface morphology; there exists a critical value of amplitude of applied Mode
IIT stress intensity factor where crack surface interactions diminish. For the applied Mode III stress inten-
sity factor of less than the critical value, the dominant mechanism of energy loss is due to friction between
the fracture surfaces. In contrast, for the amplitude of applied stress intensity factor greater than this crit-
ical value, the energy loss due to plasticity at the crack tip is the dominant mechanism of energy loss as the
frictional energy loss becomes negligible. The value of this critical stress intensity factor depends on the
fracture surface morphology (asperities height and wavelength). The effect of fracture surface crack pattern
parameters on the variation of the shaft energy losses with the amplitude of applied Mode III stress inten-
sity factor is presented. The loss factors due to the friction between the mutual crack surfaces and cyclic
plasticity at the crack tip are defined based on their contribution in the energy loss of the system in one
cycle. Apparently, the loss factor due to friction between the mutual crack surfaces exhibits higher sensitiv-
ity to the crack pattern parameters (fracture surface asperities height and wavelength).

The torsional dynamic response of the circumferentially cracked shaft is evaluated by taking into ac-
count the effect of the local energy loss. The results indicate that the local energy loss affects the amplitude
of the vibration, as well as the peak response frequencies of the cracked shaft. The results show that by
increasing the local loss factor the peak response frequencies of the cracked shaft approaches to the reso-
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nant frequencies of the uncracked shaft. However, further increase of the system loss factor does not affect
the peak response frequencies of the system. It can be concluded that monitoring the peak response fre-
quencies and amplitude of the response as a vibration-based non-destructive technique may result in an
inaccurate conclusion regarding the presence of a crack in a turbo-generator shaft. However, monitoring
the damping of the cracked shaft, in addition to the peak response frequencies and amplitude may provide
enough information for crack detection. Panteliou et al. (2001) and Panteliou and Dimarogonas (1997)
evaluated the damping behavior of a homogeneous, isotropic, elasto-plastic bar with a single-edge crack
under alternating uniform axial stress considering the non-reversible heat flow from areas of higher heat
generation to the lower heat generation. They suggested that the local damping could be exploited as a
vibration parameter to predict the crack severity and its location.

Appendix A

The normal pressure profile parameters are attained by simultaneously satisfying the Mode 1 crack
opening displacement and Mode III crack displacement at the point x;. This requires solution of a set
of non-linear equations. It should be noted that if the applied torque is very small, the pressure distribution
parameters might not be obtainable by exploiting this theoretical procedures. This may suggest that the
Mode III crack mouth displacement is less than half of the asperities wavelength. In this case, an experi-
mental data regarding Mode III crack mouth displacement is required, in order to obtain the pressure
profile parameters.

The assumed pressure profile and the corresponding frictional Mode III stress intensity factor for each
stress distribution of Fig. 7 are as follows.

Case A. The normal stress varies linearly from the maximum value of ¢y < gy at the crack tip to zero at
X1,

0, O<x<x1,

o(x) = 602_);], X <x<b, (A1)
— Al
where the maximum value of stress, o
hnE
_ A2
= T8 R b (A2)

and

' ’ ! R—b R—b
(R, b,x1) = R —x)(x —x;)dx —_— -1
Ak bx) = | [ @ max [ o deos e t—

X cosflR_b—I— R—b db|. (A.3)

R=x Jr—x7 — (R - by

The frictional Mode III stress intensity factor for this pressure profile can be obtained by substituting
(17), (18), (A.1) and (A.2) in (16),

AN hnET b(x—x)
el d. A4
f (TE) SX(R,b,)ﬂ)(b — xl) /x] (bz _x2)0.5 ( )
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Case B. The normal stress is equal to the material yield stress from the crack tip to a point at the distance
X, from the crack tip, then decreases linearly to the extent of interaction point, x,

0, 0<x<ux,
X — X
a(x) = oY X <x <X, (A.S)
2 — X

oy, X; <x<b,

where x, can be obtained from u;(x;) = A, which results in,

8o
= 7TES/{X2(R7b7x1;x2)7 (A6)
where
b b R—b R—b
XZ(R7b7x17x2): /(R—x)dx — COS_1
" + (R=D) o \/(R—xl)z_(R—b)z
R— R—
cos B2 b db

VR=x7 = (R—b)’

x2 b 1 R—-b R—-b
R—x)(x —x;)dx 3 -
+/xl( =) [(R—m o) | R_x1+\/(R—xl)2—(R—b)2

X cos”i_b—&— R=b db ;. (A7)
“JR=x)P = (R—b)

The frictional Mode III stress intensity factor can be calculated from,

Koo — — QO’SF 1 /"2 X — X dx+/b;dx (A.8)
fric — T gy X — X . (bZ_xz)O.S - (bZ_xz)O,S . .

Case C. The normal stress is equal to the yield stress of the material along the interaction zone,

0, 0<x<ux,
o(x) = { e (A.9)
oy, X3 <x<b.
The frictional Mode III stress intensity factor for this case is,

b 0.5
Kic = — (_> I'oy
Y
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